Kartezyen ve Bağıntı Matematik Konu Anlatımı

Posted on 13 Aralık 201213 Aralık 2012Categories 09. Sınıf Matematik, Kartezyen Çarpımı ve Bağıntı, Matematik Konuları, YGS Matematik, YGS Matematik Konuları OkuTags , , , , , , , , , , ,   Leave a comment on Kartezyen ve Bağıntı Matematik Konu Anlatımı

kartezyen çarpımı
Continue reading “Kartezyen ve Bağıntı Matematik Konu Anlatımı”

Kartezyen Çarpımı ve Bağıntı

Posted on 06 Ocak 2012Categories Kartezyen Çarpımı ve Bağıntı, YGS Matematik, YGS Matematik Konuları OkuTags ,   Leave a comment on Kartezyen Çarpımı ve Bağıntı

KARTEZYEN ÇARPIM BAĞINTI

 

A. SIRALI n Lİ

n tane nesnenin belli bir öncelik sırasına göre düzenlenip, tek bir nesne gibi düşünülmesiyle elde edilen ifadeye sıralı n li denir.

(a, b) sıralı ikilisinde;

a ya birinci bileşen, b ye ikinci bileşen denir.

a ¹ b ise, (a, b) ¹ (b, a) dır.

(a, b) = (c, d) ise, (a = c ve b = d) dir.

 

 

B. KARTEZYEN ÇARPIM

A ve B herhangi iki küme olmak üzere, birinci bileşeni A kümesinden, ikinci bileşeni B kümesinden alınarak oluşturulan bütün sıralı ikililerin kümesine, A ile B nin kartezyen çarpımı denir.

A kartezyen çarpım B kümesi A ´ B ile gösterilir.

A ´ B = {(x, y) : x Î A ve y Î B} dir.

A ¹ B ise, A ´ B ¹ B ´ A dır.

 

 

C. KARTEZYEN ÇARPIMIN ÖZELİKLERİ

  1. 1) s(A) = m ve s(B) = n ise

    s(A ´ B) = s(B ´ A) = m × n dir.

  2. A ´ (B ´ C) = (A ´ B) ´ C
  3. A ´ (B È C) = (A ´ B) È (A ´ C)
  4. (B È C) ´ A = (B ´ A) È (C ´ A)
  5. A ´ (B Ç C) = (A ´ B) Ç (A ´ C)
  6. (B Ç C) ´ A = (B ´ A) Ç (C ´ A)
  7. A ´ Æ = Æ ´ A = Æ

 

 

D. BAĞINTI

A ve B herhangi iki küme olmak üzere A ´ B nin her alt kümesine A dan B ye bağıntı denir.

Bağıntı genellikle b ile gösterilir.

b Ì A ´ B ise, b = {(x, y) : (x, y) Î A ´ B} dir.

Ü s(A) = m ve s(B) = n ise,

A dan B ye 2m×n tane bağıntı tanımlanabilir.

Ü A ´ A nın herhangi bir alt kümesine A dan A ya bağıntı ya da A da bağıntı denir.
Ü s(A) = m ve s(B) = n olmak üzere,

A dan B ye tanımlanabilen r elemanlı (r £ m × n) bağıntı sayısı

Ü b Ì A ´ B olmak üzere,

b = {(x, y) : (x, y) Î A ´ B} bağıntısının tersi

b–1 Ì B ´ A dır.

Buna göre, b bağıntısının tersi

b–1 = {(y, x) : (x, y) Î b} dır.

 

 

E. BAĞINTININ ÖZELİKLERİ

b, A da tanımlı bir bağıntı olsun.

 

1. Yansıma Özeliği

A kümesinin bütün x elemanları için (x, x) Î b ise, b yansıyandır.

x Î A için, (x, x) Î b ise, b yansıyandır. ( : Her)

 

2. Simetri Özeliği

b bağıntısının bütün (x, y) elemanları için (y, x) Î b ise, b simetriktir.

(x, y) Î b için (y, x) Î b ise, b simetriktir.

Ü b bağıntısı simetrik ise b = b–1 dir.
Ü s(A) = n olmak üzere, A kümesinde tanımlanabilecek simetrik bağıntı sayısı dir.
Ü s(A) = n olmak üzere, A kümesinde tanımlanabilecek yansıyan bağıntı sayısı dir.

 

3. Ters Simetri Özeliği

b bağıntısı A kümesinde tanımlı olsun.

x ¹ y iken (x, y) Î b için (y, x) Ï b ise, b ters simetriktir.

b bağıntısında (x, x) elemanın bulunması ters simetri özeliğini bozmaz.

 

4. Geçişme Özeliği

b, A da tanımlı bir bağıntı olsun.

[(x, y) Î b ve (y, z) Î b] için (x, z) Î b ise,

b bağıntısının geçişme özeliği vardır.

Boş kümeden farklı bir A kümesinde tanımlanan b = Æ bağıntısında yansıma özeliği yoktur. Simetri, Ters simetri, geçişme özeliği vardır.

 

 

F. BAĞINTI ÇEŞİTLERİ

1. Denklik Bağıntısı

b bağıntısı A kümesinde tanımlı olsun.

b; Yansıma, Simetri, Geçişme özeliğini sağlıyorsa denklik bağıntısıdır.

Ü b, A kümesinde tanımlı bir denklik bağıntısı olsun. (x, y) Î b ise x ve y elemanları b bağıntısına göre denktir denir ve x º y şeklinde yazılır.
Ü b, A kümesinde tanımlı bir denklik bağıntısı olsun. A da x elemanına denk olan bütün elemanların kümesine x in denklik sınıfı denir ve şeklinde gösterilir. x in denklik sınıfının kümesi,

 

2. Sıralama Bağıntısı

A kümesinde tanımlı b bağıntısında; Yansıma, Ters simetri, Geçişme özeliği varsa b sıralama bağıntısıdır.

Bir bağıntı hem denklik, hem de sıralama bağıntısı olabilir.